Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
2.
Obes Sci Pract ; 8(4): 474-482, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1981949

ABSTRACT

Objectives: Hospitalized patients with severe obesity require adapted hospital management. The aim of this study was to evaluate a machine learning model to predict in-hospital mortality among this population. Methods: Data of unselected consecutive emergency department admissions of hospitalized patients with severe obesity (BMI ≥ 40 kg/m2) was analyzed. Data was retrieved from five hospitals from the Mount Sinai health system, New York. The study time frame was between January 2011 and December 2019. Data was used to train a gradient-boosting machine learning model to identify in-hospital mortality. The model was trained and evaluated based on the data from four hospitals and externally validated on held-out data from the fifth hospital. Results: A total of 14,078 hospital admissions of inpatients with severe obesity were included. The in-hospital mortality rate was 297/14,078 (2.1%). In univariate analysis, albumin (area under the curve [AUC] = 0.77), blood urea nitrogen (AUC = 0.76), acuity level (AUC = 0.73), lactate (AUC = 0.72), and chief complaint (AUC = 0.72) were the best single predictors. For Youden's index, the model had a sensitivity of 0.77 (95% CI: 0.67-0.86) with a false positive rate of 1:9. Conclusion: A machine learning model trained on clinical measures provides proof of concept performance in predicting mortality in patients with severe obesity. This implies that such models may help to adopt specific decision support tools for this population.

3.
J Am Med Inform Assoc ; 29(9): 1618-1630, 2022 08 16.
Article in English | MEDLINE | ID: covidwho-1860867

ABSTRACT

OBJECTIVE: To describe adaptations necessary for effective use of direct-to-consumer (DTC) cameras in an inpatient setting, from the perspective of health care workers. METHODS: Our qualitative study included semi-structured interviews and focus groups with clinicians, information technology (IT) personnel, and health system leaders affiliated with the Mount Sinai Health System. All participants either worked in a coronavirus disease 2019 (COVID-19) unit with DTC cameras or participated in the camera implementation. Three researchers coded the transcripts independently and met weekly to discuss and resolve discrepancies. Abiding by inductive thematic analysis, coders revised the codebook until they reached saturation. All transcripts were coded in Dedoose using the final codebook. RESULTS: Frontline clinical staff, IT personnel, and health system leaders (N = 39) participated in individual interviews and focus groups in November 2020-April 2021. Our analysis identified 5 areas for effective DTC camera use: technology, patient monitoring, workflows, interpersonal relationships, and infrastructure. Participants described adaptations created to optimize camera use and opportunities for improvement necessary for sustained use. Non-COVID-19 patients tended to decline participation. DISCUSSION: Deploying DTC cameras on inpatient units required adaptations in many routine processes. Addressing consent, 2-way communication issues, patient privacy, and messaging about video monitoring could help facilitate a nimble rollout. Implementation and dissemination of inpatient video monitoring using DTC cameras requires input from patients and frontline staff. CONCLUSIONS: Given the resources and time it takes to implement a usable camera solution, other health systems might benefit from creating task forces to investigate their use before the next crisis.


Subject(s)
COVID-19 , Health Personnel , Hospitals , Humans , Inpatients , Search Engine
4.
BMC Endocr Disord ; 22(1): 13, 2022 Jan 06.
Article in English | MEDLINE | ID: covidwho-1613234

ABSTRACT

BACKGROUND: Research regarding the association between severe obesity and in-hospital mortality is inconsistent. We evaluated the impact of body mass index (BMI) levels on mortality in the medical wards. The analysis was performed separately before and during the COVID-19 pandemic. METHODS: We retrospectively retrieved data of adult patients admitted to the medical wards at the Mount Sinai Health System in New York City. The study was conducted between January 1, 2011, to March 23, 2021. Patients were divided into two sub-cohorts: pre-COVID-19 and during-COVID-19. Patients were then clustered into groups based on BMI ranges. A multivariate logistic regression analysis compared the mortality rate among the BMI groups, before and during the pandemic. RESULTS: Overall, 179,288 patients were admitted to the medical wards and had a recorded BMI measurement. 149,098 were admitted before the COVID-19 pandemic and 30,190 during the pandemic. Pre-pandemic, multivariate analysis showed a "J curve" between BMI and mortality. Severe obesity (BMI > 40) had an aOR of 0.8 (95% CI:0.7-1.0, p = 0.018) compared to the normal BMI group. In contrast, during the pandemic, the analysis showed a "U curve" between BMI and mortality. Severe obesity had an aOR of 1.7 (95% CI:1.3-2.4, p < 0.001) compared to the normal BMI group. CONCLUSIONS: Medical ward patients with severe obesity have a lower risk for mortality compared to patients with normal BMI. However, this does not apply during COVID-19, where obesity was a leading risk factor for mortality in the medical wards. It is important for the internal medicine physician to understand the intricacies of the association between obesity and medical ward mortality.


Subject(s)
Body Mass Index , COVID-19/mortality , Hospital Mortality/trends , Hospitalization/statistics & numerical data , Obesity/physiopathology , SARS-CoV-2/isolation & purification , Aged , COVID-19/epidemiology , COVID-19/pathology , COVID-19/virology , Case-Control Studies , Female , Humans , Male , Middle Aged , New York City/epidemiology , Prognosis , Retrospective Studies , Risk Factors , Survival Rate
5.
J Med Internet Res ; 23(9): e31295, 2021 09 13.
Article in English | MEDLINE | ID: covidwho-1352772

ABSTRACT

BACKGROUND: The COVID-19 pandemic has resulted in a high degree of psychological distress among health care workers (HCWs). There is a need to characterize which HCWs are at an increased risk of developing psychological effects from the pandemic. Given the differences in the response of individuals to stress, an analysis of both the perceived and physiological consequences of stressors can provide a comprehensive evaluation of its impact. OBJECTIVE: This study aimed to determine characteristics associated with longitudinal perceived stress in HCWs and to assess whether changes in heart rate variability (HRV), a marker of autonomic nervous system function, are associated with features protective against longitudinal stress. METHODS: HCWs across 7 hospitals in New York City, NY, were prospectively followed in an ongoing observational digital study using the custom Warrior Watch Study app. Participants wore an Apple Watch for the duration of the study to measure HRV throughout the follow-up period. Surveys measuring perceived stress, resilience, emotional support, quality of life, and optimism were collected at baseline and longitudinally. RESULTS: A total of 361 participants (mean age 36.8, SD 10.1 years; female: n=246, 69.3%) were enrolled. Multivariate analysis found New York City's COVID-19 case count to be associated with increased longitudinal stress (P=.008). Baseline emotional support, quality of life, and resilience were associated with decreased longitudinal stress (P<.001). A significant reduction in stress during the 4-week period after COVID-19 diagnosis was observed in the highest tertial of emotional support (P=.03) and resilience (P=.006). Participants in the highest tertial of baseline emotional support and resilience had a significantly different circadian pattern of longitudinally collected HRV compared to subjects in the low or medium tertial. CONCLUSIONS: High resilience, emotional support, and quality of life place HCWs at reduced risk of longitudinal perceived stress and have a distinct physiological stress profile. Our findings support the use of these characteristics to identify HCWs at risk of the psychological and physiological stress effects of the pandemic.


Subject(s)
COVID-19 , Pandemics , Adult , COVID-19 Testing , Female , Health Personnel , Humans , New York City , Quality of Life , SARS-CoV-2 , Stress, Physiological , Stress, Psychological/epidemiology
6.
Obesity (Silver Spring) ; 29(9): 1547-1553, 2021 09.
Article in English | MEDLINE | ID: covidwho-1212774

ABSTRACT

OBJECTIVE: Obesity is associated with severe coronavirus disease 2019 (COVID-19) infection. Disease severity is associated with a higher COVID-19 antibody titer. The COVID-19 antibody titer response of patients with obesity versus patients without obesity was compared. METHODS: The data of individuals tested for COVID-19 serology at the Mount Sinai Health System in New York City between March 1, 2020, and December 14, 2021, were retrospectively retrieved. The primary outcome was peak antibody titer, assessed as a binary variable (1:2,880, which was the highest detected titer, versus lower than 1:2,880). In patients with a positive serology test, peak titer rates were compared between BMI groups (<18.5, 18.5 to 25, 25 to 30, 30 to 40, and ≥40 kg/m2 ). A multivariable logistic regression model was used to analyze the independent association between different BMI groups and peak titer. RESULTS: Overall, 39,342 individuals underwent serology testing and had BMI measurements. A positive serology test was present in 12,314 patients. Peak titer rates were associated with obesity (BMI < 18.5 [34.5%], 18.5 to 25 [29.2%], 25 to 30 [37.7%], 30 to 40 [44.7%], ≥40 [52.0%]; p < 0.001). In a multivariable analysis, severe obesity had the highest adjusted odds ratio for peak titer (95% CI: 2.1-3.0). CONCLUSION: COVID-19 neutralizing antibody titer is associated with obesity. This has implications on the understanding of the role of obesity in COVID-19 severity.


Subject(s)
Antibodies, Viral/blood , COVID-19 , Obesity , Antibodies, Neutralizing/blood , COVID-19/immunology , Humans , Logistic Models , Obesity/complications , Retrospective Studies
7.
J Am Soc Nephrol ; 32(1): 151-160, 2021 01.
Article in English | MEDLINE | ID: covidwho-1080996

ABSTRACT

BACKGROUND: Early reports indicate that AKI is common among patients with coronavirus disease 2019 (COVID-19) and associated with worse outcomes. However, AKI among hospitalized patients with COVID-19 in the United States is not well described. METHODS: This retrospective, observational study involved a review of data from electronic health records of patients aged ≥18 years with laboratory-confirmed COVID-19 admitted to the Mount Sinai Health System from February 27 to May 30, 2020. We describe the frequency of AKI and dialysis requirement, AKI recovery, and adjusted odds ratios (aORs) with mortality. RESULTS: Of 3993 hospitalized patients with COVID-19, AKI occurred in 1835 (46%) patients; 347 (19%) of the patients with AKI required dialysis. The proportions with stages 1, 2, or 3 AKI were 39%, 19%, and 42%, respectively. A total of 976 (24%) patients were admitted to intensive care, and 745 (76%) experienced AKI. Of the 435 patients with AKI and urine studies, 84% had proteinuria, 81% had hematuria, and 60% had leukocyturia. Independent predictors of severe AKI were CKD, men, and higher serum potassium at admission. In-hospital mortality was 50% among patients with AKI versus 8% among those without AKI (aOR, 9.2; 95% confidence interval, 7.5 to 11.3). Of survivors with AKI who were discharged, 35% had not recovered to baseline kidney function by the time of discharge. An additional 28 of 77 (36%) patients who had not recovered kidney function at discharge did so on posthospital follow-up. CONCLUSIONS: AKI is common among patients hospitalized with COVID-19 and is associated with high mortality. Of all patients with AKI, only 30% survived with recovery of kidney function by the time of discharge.


Subject(s)
Acute Kidney Injury/etiology , COVID-19/complications , SARS-CoV-2 , Acute Kidney Injury/epidemiology , Acute Kidney Injury/therapy , Acute Kidney Injury/urine , Aged , Aged, 80 and over , COVID-19/mortality , Female , Hematuria/etiology , Hospital Mortality , Hospitals, Private/statistics & numerical data , Hospitals, Urban/statistics & numerical data , Humans , Incidence , Inpatients , Leukocytes , Male , Middle Aged , New York City/epidemiology , Proteinuria/etiology , Renal Dialysis , Retrospective Studies , Treatment Outcome , Urine/cytology
8.
AIDS Behav ; 25(5): 1340-1360, 2021 May.
Article in English | MEDLINE | ID: covidwho-1074438

ABSTRACT

The COVID-19 pandemic has great potential to disrupt the lives of persons living with HIV (PLWH). The present convergent parallel design mixed-methods study explored the early effects of COVID-19 on African American/Black or Latino (AABL) long-term survivors of HIV in a pandemic epicenter, New York City. A total of 96 AABL PLWH were recruited from a larger study of PLWH with non-suppressed HIV viral load. They engaged in structured assessments focused on knowledge, testing, trust in information sources, and potential emotional, social, and behavioral impacts. Twenty-six of these participants were randomly selected for in-depth semi-structured interviews. Participants were mostly men (64%), African American/Black (75%), and had lived with HIV for 17 years, on average (SD=9 years). Quantitative results revealed high levels of concern about and the adoption of recommended COVID-19 prevention recommendations. HIV care visits were commonly canceled but, overall, engagement in HIV care and antiretroviral therapy use were not seriously disrupted. Trust in local sources of information was higher than trust in various federal sources. Qualitative findings complemented and enriched quantitative results and provided a multifaceted description of both risk factors (e.g., phones/internet access were inadequate for some forms of telehealth) and resilience (e.g., "hustling" for food supplies). Participants drew a direct line between structural racism and the disproportional adverse effects of COVID-19 on communities of color, and their knowledge gleaned from the HIV pandemic was applied to COVID-19. Implications for future crisis preparedness are provided, including how the National HIV/AIDS Strategy can serve as a model to prevent COVID-19 from becoming another pandemic of the poor.


Subject(s)
COVID-19 , HIV Infections , Black or African American , HIV Infections/drug therapy , HIV Infections/epidemiology , HIV Infections/prevention & control , Hispanic or Latino , Humans , Male , New York City/epidemiology , Pandemics/prevention & control , SARS-CoV-2
9.
Lung ; 198(5): 771-775, 2020 10.
Article in English | MEDLINE | ID: covidwho-756086

ABSTRACT

PURPOSE: To investigate whether sarcoidosis patients infected with SARS-CoV-2 are at risk for adverse disease outcomes. STUDY DESIGN AND METHODS: This retrospective study was conducted in five hospitals within the Mount Sinai Health System during March 1, 2020 to July 29, 2020. All patients diagnosed with COVID-19 were included in the study. We identified sarcoidosis patients who met diagnostic criteria for sarcoidosis according to accepted guidelines. An adverse disease outcome was defined as the presence of intubation and mechanical ventilation or in-hospital mortality. In sarcoidosis patients, we reported (when available) the results of pulmonary function testing measured within 3 years prior to the time of SARS­CoV­2 infection. A multivariable logistic regression model was used to generate an adjusted odds ratio (aOR) to evaluate sarcoidosis as a risk factor for an adverse outcome. The same model was used to analyze sarcoidosis patients with moderate and/or severe impairment in pulmonary function. RESULTS: The study included 7337 patients, 37 of whom (0.5%) had sarcoidosis. The crude rate of developing an adverse outcome was significantly higher in patients with moderately and/or severely impaired pulmonary function (9/14 vs. 3/23, p = 0.003). While the diagnosis of sarcoidosis was not independently associated with risk of an adverse event, (aOR 1.8, 95% CI 0.9-3.6), the diagnosis of sarcoidosis in patients with moderately and/or severely impaired pulmonary function was associated with an adverse outcome (aOR 7.8, 95% CI 2.4-25.8). CONCLUSION: Moderate or severe impairment in pulmonary function is associated with mortality in sarcoidosis patients infected with SARS­CoV­2.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections , Pandemics , Pneumonia, Viral , Respiratory Function Tests/methods , Sarcoidosis, Pulmonary , COVID-19 , Comorbidity , Coronavirus Infections/mortality , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Female , Hospital Mortality , Humans , Male , Middle Aged , Outcome and Process Assessment, Health Care , Pneumonia, Viral/mortality , Pneumonia, Viral/physiopathology , Pneumonia, Viral/therapy , Respiration, Artificial/statistics & numerical data , Retrospective Studies , Risk Factors , SARS-CoV-2 , Sarcoidosis, Pulmonary/diagnosis , Sarcoidosis, Pulmonary/epidemiology , Sarcoidosis, Pulmonary/physiopathology , United States/epidemiology
10.
J Med Internet Res ; 22(11): e24018, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-979821

ABSTRACT

BACKGROUND: COVID-19 has infected millions of people worldwide and is responsible for several hundred thousand fatalities. The COVID-19 pandemic has necessitated thoughtful resource allocation and early identification of high-risk patients. However, effective methods to meet these needs are lacking. OBJECTIVE: The aims of this study were to analyze the electronic health records (EHRs) of patients who tested positive for COVID-19 and were admitted to hospitals in the Mount Sinai Health System in New York City; to develop machine learning models for making predictions about the hospital course of the patients over clinically meaningful time horizons based on patient characteristics at admission; and to assess the performance of these models at multiple hospitals and time points. METHODS: We used Extreme Gradient Boosting (XGBoost) and baseline comparator models to predict in-hospital mortality and critical events at time windows of 3, 5, 7, and 10 days from admission. Our study population included harmonized EHR data from five hospitals in New York City for 4098 COVID-19-positive patients admitted from March 15 to May 22, 2020. The models were first trained on patients from a single hospital (n=1514) before or on May 1, externally validated on patients from four other hospitals (n=2201) before or on May 1, and prospectively validated on all patients after May 1 (n=383). Finally, we established model interpretability to identify and rank variables that drive model predictions. RESULTS: Upon cross-validation, the XGBoost classifier outperformed baseline models, with an area under the receiver operating characteristic curve (AUC-ROC) for mortality of 0.89 at 3 days, 0.85 at 5 and 7 days, and 0.84 at 10 days. XGBoost also performed well for critical event prediction, with an AUC-ROC of 0.80 at 3 days, 0.79 at 5 days, 0.80 at 7 days, and 0.81 at 10 days. In external validation, XGBoost achieved an AUC-ROC of 0.88 at 3 days, 0.86 at 5 days, 0.86 at 7 days, and 0.84 at 10 days for mortality prediction. Similarly, the unimputed XGBoost model achieved an AUC-ROC of 0.78 at 3 days, 0.79 at 5 days, 0.80 at 7 days, and 0.81 at 10 days. Trends in performance on prospective validation sets were similar. At 7 days, acute kidney injury on admission, elevated LDH, tachypnea, and hyperglycemia were the strongest drivers of critical event prediction, while higher age, anion gap, and C-reactive protein were the strongest drivers of mortality prediction. CONCLUSIONS: We externally and prospectively trained and validated machine learning models for mortality and critical events for patients with COVID-19 at different time horizons. These models identified at-risk patients and uncovered underlying relationships that predicted outcomes.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Machine Learning/standards , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Acute Kidney Injury/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Cohort Studies , Electronic Health Records , Female , Hospital Mortality , Hospitalization/statistics & numerical data , Hospitals , Humans , Male , Middle Aged , New York City/epidemiology , Pandemics , Prognosis , ROC Curve , Risk Assessment/methods , Risk Assessment/standards , SARS-CoV-2 , Young Adult
11.
BMJ Open ; 10(11): e040736, 2020 11 27.
Article in English | MEDLINE | ID: covidwho-947830

ABSTRACT

OBJECTIVE: The COVID-19 pandemic is a global public health crisis, with over 33 million cases and 999 000 deaths worldwide. Data are needed regarding the clinical course of hospitalised patients, particularly in the USA. We aimed to compare clinical characteristic of patients with COVID-19 who had in-hospital mortality with those who were discharged alive. DESIGN: Demographic, clinical and outcomes data for patients admitted to five Mount Sinai Health System hospitals with confirmed COVID-19 between 27 February and 2 April 2020 were identified through institutional electronic health records. We performed a retrospective comparative analysis of patients who had in-hospital mortality or were discharged alive. SETTING: All patients were admitted to the Mount Sinai Health System, a large quaternary care urban hospital system. PARTICIPANTS: Participants over the age of 18 years were included. PRIMARY OUTCOMES: We investigated in-hospital mortality during the study period. RESULTS: A total of 2199 patients with COVID-19 were hospitalised during the study period. As of 2 April, 1121 (51%) patients remained hospitalised, and 1078 (49%) completed their hospital course. Of the latter, the overall mortality was 29%, and 36% required intensive care. The median age was 65 years overall and 75 years in those who died. Pre-existing conditions were present in 65% of those who died and 46% of those discharged. In those who died, the admission median lymphocyte percentage was 11.7%, D-dimer was 2.4 µg/mL, C reactive protein was 162 mg/L and procalcitonin was 0.44 ng/mL. In those discharged, the admission median lymphocyte percentage was 16.6%, D-dimer was 0.93 µg/mL, C reactive protein was 79 mg/L and procalcitonin was 0.09 ng/mL. CONCLUSIONS: In our cohort of hospitalised patients, requirement of intensive care and mortality were high. Patients who died typically had more pre-existing conditions and greater perturbations in inflammatory markers as compared with those who were discharged.


Subject(s)
COVID-19/blood , Critical Care , Hospital Mortality , Hospitalization , Pandemics , Adolescent , Adult , Aged , Aged, 80 and over , C-Reactive Protein/metabolism , COVID-19/epidemiology , COVID-19/mortality , Comorbidity , Critical Care/statistics & numerical data , Female , Fibrin Fibrinogen Degradation Products/metabolism , Hospitals , Humans , Lymphocytes/metabolism , Male , Middle Aged , New York City/epidemiology , Procalcitonin/blood , Retrospective Studies , Risk Factors , SARS-CoV-2 , Young Adult
12.
Am J Emerg Med ; 46: 520-524, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-912013

ABSTRACT

BACKGROUND AND AIM: New York City (NYC) is an epicenter of the COVID-19 pandemic in the United States. Proper triage of patients with possible COVID-19 via chief complaint is critical but not fully optimized. This study aimed to investigate the association between presentation by chief complaints and COVID-19 status. METHODS: We retrospectively analyzed adult emergency department (ED) patient visits from five different NYC hospital campuses from March 1, 2020 to May 13, 2020 of patients who underwent nasopharyngeal COVID-19 RT-PCR testing. The positive and negative COVID-19 cohorts were then assessed for different chief complaints obtained from structured triage data. Sub-analysis was performed for patients older than 65 and within chief complaints with high mortality. RESULTS: Of 11,992 ED patient visits who received COVID-19 testing, 6524/11992 (54.4%) were COVID-19 positive. 73.5% of fever, 67.7% of shortness of breath, and 65% of cough had COVID-19, but others included 57.5% of weakness/fall/altered mental status, 55.5% of glycemic control, and 51.4% of gastrointestinal symptoms. In patients over 65, 76.7% of diarrhea, 73.7% of fatigue, and 69.3% of weakness had COVID-19. 45.5% of dehydration, 40.5% of altered mental status, 27% of fall, and 24.6% of hyperglycemia patients experienced mortality. CONCLUSION: A novel high risk COVID-19 patient population was identified from chief complaint data, which is different from current suggested CDC guidelines, and may help triage systems to better isolate COVID-19 patients. Older patients with COVID-19 infection presented with more atypical complaints warranting special consideration. COVID-19 was associated with higher mortality in a unique group of complaints also warranting special consideration.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Emergency Service, Hospital/statistics & numerical data , Pandemics , Triage/methods , Adult , Aged , COVID-19/epidemiology , Female , Follow-Up Studies , Humans , Male , Middle Aged , New York City/epidemiology , Retrospective Studies
13.
BMJ Support Palliat Care ; 2020 Sep 22.
Article in English | MEDLINE | ID: covidwho-788172

ABSTRACT

OBJECTIVES: To develop and validate a model for prediction of near-term in-hospital mortality among patients with COVID-19 by application of a machine learning (ML) algorithm on time-series inpatient data from electronic health records. METHODS: A cohort comprised of 567 patients with COVID-19 at a large acute care healthcare system between 10 February 2020 and 7 April 2020 observed until either death or discharge. Random forest (RF) model was developed on randomly drawn 70% of the cohort (training set) and its performance was evaluated on the rest of 30% (the test set). The outcome variable was in-hospital mortality within 20-84 hours from the time of prediction. Input features included patients' vital signs, laboratory data and ECG results. RESULTS: Patients had a median age of 60.2 years (IQR 26.2 years); 54.1% were men. In-hospital mortality rate was 17.0% and overall median time to death was 6.5 days (range 1.3-23.0 days). In the test set, the RF classifier yielded a sensitivity of 87.8% (95% CI: 78.2% to 94.3%), specificity of 60.6% (95% CI: 55.2% to 65.8%), accuracy of 65.5% (95% CI: 60.7% to 70.0%), area under the receiver operating characteristic curve of 85.5% (95% CI: 80.8% to 90.2%) and area under the precision recall curve of 64.4% (95% CI: 53.5% to 75.3%). CONCLUSIONS: Our ML-based approach can be used to analyse electronic health record data and reliably predict near-term mortality prediction. Using such a model in hospitals could help improve care, thereby better aligning clinical decisions with prognosis in critically ill patients with COVID-19.

14.
SN Compr Clin Med ; 2(9): 1319-1322, 2020.
Article in English | MEDLINE | ID: covidwho-710357

ABSTRACT

Previous studies demonstrated a higher COVID-19 fatality rate in men. The aim of this study was to compare age and comorbidities between women and men who died from COVID-19. We retrospectively analyzed data of COVID-19 patients hospitalized to a large academic hospital system in New York City between March 1 and May 9, 2020. We used a multivariable logistic regression model to identify independently significant variables associated with gender in patients who died from COVID-19. The model was adjusted for age and comorbidities known to be associated with COVID-19 mortality. We identified 6760 patients diagnosed with COVID-19. Of these patients, 3018/6760 (44.6%) were women. The mortality rate was higher for men (women 18.2% vs. men 20.6%, p = 0.039). Of the patients who died, women were on average 5 years older than men (woman 77.4 ± 12.7 vs. men 72.4 ± 13.0, p < 0.001). In the multivariable model, cardiovascular comorbidities were not significantly different between women and men. Chronic kidney disease (aOR for women 0.7, 95% CI 0.5-0.9) and smoking (aOR for women 0.7, 95% CI 0.5-0.9) were more common in men. Age decile (aOR for women 1.4, 95% CI 1.3-1.6) and obesity (aOR for women 2.3, 95% CI 1.8-3.0) were higher in women. This study demonstrates that women who died of COVID-19 showed a similar cardiovascular disease profile as men. Yet, they are 5 years older than men. Investigating the gender impacts of COVID-19 is an important part of understanding the disease behavior.

15.
Obesity (Silver Spring) ; 28(9): 1595-1599, 2020 09.
Article in English | MEDLINE | ID: covidwho-700198

ABSTRACT

OBJECTIVE: Coronavirus disease 2019 (COVID-19) continues to spread, and younger patients are also being critically affected. This study analyzed obesity as an independent risk factor for mortality in hospitalized patients younger than 50. METHODS: This study retrospectively analyzed data of patients with COVID-19 who were hospitalized to a large academic hospital system in New York City between March 1, 2020, and May 17, 2020. Data included demographics, comorbidities, BMI, and smoking status. Obesity groups included the following: BMI of 30 to < 40 kg/m2 and BMI ≥ 40 kg/m2 . Multivariable logistic regression models identified variables independently associated with mortality in patients younger and older than 50. RESULTS: Overall, 3,406 patients were included; 572 (17.0%) patients were younger than 50. In the younger age group, 60 (10.5%) patients died. In the older age group, 1,076 (38.0%) patients died. For the younger population, BMI ≥ 40 was independently associated with mortality (adjusted odds ratio 5.1; 95% CI: 2.3-11.1). For the older population, BMI ≥ 40 was also independently associated with mortality to a lesser extent (adjusted odds ratio 1.6; 95% CI: 1.2-2.3). CONCLUSIONS: This study demonstrates that hospitalized patients younger than 50 with severe obesity are more likely to die of COVID-19. This is particularly relevant in the Western world, where obesity rates are high.


Subject(s)
Betacoronavirus , Coronavirus Infections/mortality , Obesity, Morbid/complications , Pneumonia, Viral/mortality , Adult , Aged , COVID-19 , Comorbidity , Coronavirus Infections/complications , Female , Hospitalization , Humans , Logistic Models , Male , Middle Aged , Obesity, Morbid/mortality , Odds Ratio , Pandemics , Pneumonia, Viral/complications , Retrospective Studies , Risk Factors , SARS-CoV-2
16.
J Clin Med ; 9(6)2020 Jun 01.
Article in English | MEDLINE | ID: covidwho-457499

ABSTRACT

OBJECTIVES: Approximately 20-30% of patients with COVID-19 require hospitalization, and 5-12% may require critical care in an intensive care unit (ICU). A rapid surge in cases of severe COVID-19 will lead to a corresponding surge in demand for ICU care. Because of constraints on resources, frontline healthcare workers may be unable to provide the frequent monitoring and assessment required for all patients at high risk of clinical deterioration. We developed a machine learning-based risk prioritization tool that predicts ICU transfer within 24 h, seeking to facilitate efficient use of care providers' efforts and help hospitals plan their flow of operations. METHODS: A retrospective cohort was comprised of non-ICU COVID-19 admissions at a large acute care health system between 26 February and 18 April 2020. Time series data, including vital signs, nursing assessments, laboratory data, and electrocardiograms, were used as input variables for training a random forest (RF) model. The cohort was randomly split (70:30) into training and test sets. The RF model was trained using 10-fold cross-validation on the training set, and its predictive performance on the test set was then evaluated. RESULTS: The cohort consisted of 1987 unique patients diagnosed with COVID-19 and admitted to non-ICU units of the hospital. The median time to ICU transfer was 2.45 days from the time of admission. Compared to actual admissions, the tool had 72.8% (95% CI: 63.2-81.1%) sensitivity, 76.3% (95% CI: 74.7-77.9%) specificity, 76.2% (95% CI: 74.6-77.7%) accuracy, and 79.9% (95% CI: 75.2-84.6%) area under the receiver operating characteristics curve. CONCLUSIONS: A ML-based prediction model can be used as a screening tool to identify patients at risk of imminent ICU transfer within 24 h. This tool could improve the management of hospital resources and patient-throughput planning, thus delivering more effective care to patients hospitalized with COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL